
Lab Practices-2 Fourth Year Computer Engineering 
 

STQA Mini Project No. 1 

 

 

 
Title 

Mini-Project   1:   Create   a    small    application    by    selecting    relevant    system    environment/  

platform and programming languages. Narrate concise Test Plan consisting features to be tested and bug 

taxonomy. Prepare Test Cases inclusive of Test Procedures for identified Test Scenarios. Perform selective 

Black-box and White-box testing covering Unit and Integration test by using suitable Testing tools. Prepare 

Test Reports based on Test Pass/Fail Criteria and judge the acceptance of application developed. 

 
 Problem Definition: 

Perform Desktop Application testing using Automation Tool like JUnit generate Test Report by Using 

tool like Apache Maven. 

 Prerequisite: 

Knowledge of Core Java, Basic Concepts of Unit Testing, Test Cases Writing using Junit etc tool 

 Software Requirements: 

JDK 1.8, Eclipse java photon-R version, TestNG 

 Hardware Requirement: 

PIV, 2GB RAM, 500 GB HDD, Lenovo A13-4089Model. 

 Learning Objectives: 

We are going to learn how to Prepare Test Cases inclusive of Test Procedures for identified Test Scenarios. 

Perform selective Black-box and White-box testing covering Unit and Integration test by using suitable 

Testing tools. also Prepare Test Reports based on Test Pass/Fail Criteria 

 Outcomes: 

You are able to understand Unit and Integration testing with Tool with Test Report. 

 Theory Concepts: 

 What is Unit Testing? 

Unit Testing of software applications is done during the development (coding) of an application. 

The objective of Unit Testing is to isolate a section of code and verify its correctness. In procedural 

programming a unit may be an individual function or procedure 

The goal of Unit Testing is to isolate each part of the program and show that the individual parts are 

correct. Unit Testing is usually performed by the developer. 

 Unit Testing Tools 

There are several automated tools available to assist with unit testing. We will provide a few examples 

below: 

1. Jtest: Parasoft Jtest is an IDE plugin that leverages open-source frameworks (Junit, Mockito, 

PowerMock, and Spring) with guided and easy one-click actions for creating, scaling, and 

maintaining unit tests. By automating these time-consuming aspects of unit testing, it frees the 

https://prsft.co/2n7GdAM


Lab Practices-2 Fourth Year Computer Engineering 
 

developer to focus on business logic and create more meaningful test suites. 

2. Junit: Junit is a free to use testing tool used for Java programming language. It provides assertions 

to identify test method. This tool test data first and then inserted in the piece of code. 

3. NUnit: NUnit is widely used unit-testing framework use for all .net languages. It is open source 

tool which allows writing scripts manually. It supports data-driven tests which can run in parallel. 

4. JMockit: JMockit is open source Unit testing tool. It is code coverage tool with line and path 

metrics. It allows mocking API with recording and verification syntax. This tool offers Line 

coverage, Path Coverage, and Data Coverage. 

5. EMMA: EMMA is an open-source toolkit for analyzing and reporting code written in Java 

language. Emma support coverage types like method, line, basic block. It is Java-based so it is 

without external library dependencies and can access to the source code. 

6. PHPUnit: PHPUnit is a unit testing tool for PHP programmer. It takes small portions of code 

which is called units and test each of them separately. The tool also allows developers to use pre- 

define assertion methods to assert that system behave in a certain manner. 

Those are just a few of the available unit testing tools. There are lots more, especially for C languages and 

Java, but you are sure to find a unit testing tool for your programming needs regardless of the language 

you use. 

 Extreme Programming & Unit Testing 

Unit testing in Extreme Programming involves the extensive use of testing frameworks. A unit test 

framework is used in order to create automated unit tests. Unit testing frameworks are not unique to 

extreme programming, but they are essential to it. Below we look at some of what extreme programming 

brings to the world of unit testing: 

 Tests are written before the code 

 Rely heavily on testing frameworks 

 All classes in the applications are tested 

 Quick and easy integration is made possible 

 Bug taxonomy 

Bug taxonomies help in providing fast and effective feedback so that they can easily identify possible 

reasons for failure of the software. Using bug taxonomy, a large number of potential bugs  can  be 

grouped into few categories. 

Whenever a new bug is reported, using bug taxonomy, a tester can easily analyse and put that bug into 

any of these categories. 

At the end of testing, Testers can understand the type of categories of bugs that frequently occurred and 

thereby in successive rounds of testing he can focus on writing more test cases that would help to detect 

such bugs. In addition, test leaders can guide their testers to focus on such frequently occurring bugs. 

 
The summary of the Bug Taxonomy is given below, 

https://www.guru99.com/junit-tutorial.html
http://nunit.org/
http://jmockit.github.io/index.html
http://emma.sourceforge.net/
https://phpunit.de/


Lab Practices-2 Fourth Year Computer Engineering 
 

 Requirements, Features, and Functionality Bugs 

 Structural Bugs 

 Data Bugs 

 Coding Bugs 

 Interface, Integration, and System Bugs 

 Test and Test Design Bugs 

 Testing and Design Style 

 What is Integration Testing? 

In integration Testing, individual software modules are integrated logically and tested as a group. A 

typical  software  project  consists  of   multiple   software   modules,   coded   by   different  

programmers. integration Testing focuses on checking data communication amongst these modules. 

Hence it is also termed as 'I & T' (Integration and Testing), 'String Testing' and sometimes 'Thread Testing 

Integration Test Case: 

Integration Test Case differs from other test cases in the sense it focuses mainly on the interfaces & flow 

of data/information between the modules. Here priority is to be given for the integrating links rather 

than the unit functions which are already tested. 

Sample Integration Test Cases for the following scenario: Application has 3 modules say 'Login Page', 

'Mail box' and 'Delete mails' and each of them are integrated logically. 

Here do not concentrate much on the Login Page testing as it's already been done in Unit Testing. But 

check how it's linked to the Mail Box Page. 

Similarly Mail Box: Check its integration to the Delete Mails Module. 
 

Test 

Case ID 
Test Case Objective Test Case Description Expected Result 

1 
Check the interface link between the 

Login and Mailbox module 

Enter login credentials and click 

on the Login button 

To be directed to the 

Mail Box 

 
2 

Check the interface link between the 

Mailbox and Delete Mails Module 

From Mail box select the an 

email and click delete button 

Selected email should 

appear  in  the 

Deleted/Trash folder 

 
Desktop Application Testing by Using Junit Tool 

What is Junit? 

JUnit is a framework for implementing testing in Java. 

It provides a simple way to explicitly test specific areas of a Java program, it is extensible and can be 

employed to test a hierarchy of program code either singularly or as multiple units. 

Why use a testing framework? Using a testing framework is beneficial because it forces you to explicitly 

declare the expected results of specific program execution routes. When debugging it is possible to write a 

https://www.guru99.com/test-case.html
https://www.guru99.com/unit-testing-guide.html


Lab Practices-2 Fourth Year Computer Engineering 
 

test which expresses the result you are trying to achieve and then debug until the test comes out positive. 

By having a set of tests that test all the core components of the project it is possible to modify specific 

areas of the project and immediately see the effect the modifications have on the other areas by the 

results of the test, hence, side-effects can be quickly realized. 

JUnit promotes the idea of first testing then coding, in that it is possible to setup test data for a unit which 

defines what the expected output is and then code until the tests pass. It is believed by some that this 

practice of "test a little, code a little, test a little, code a little..." increases programmer productivity and 

stability of program code whilst reducing programmer stress and the time spent debugging. 

JUnit is a simple open source Java testing framework used to write and run repeatable automated tests. 

It is an instance of the xUnit architecture for unit testing framework. Eclipse supports creating test cases 

and running test suites, so it is easy to use for your Java applications. 

JUnit features include: 

● Assertions for testing expected results 

● Test fixtures for sharing common test data 

● Test suites for easily organizing and running tests 

● Graphical and textual test runners 

 How to Create Simple Junit Test in Eclipse IDE 

1. Download JDK 1.8 and Eclipse latest version here we are using eclipse-java-photon-R-win32. 

2. Open Eclipse IDE 

 
3. Go to File and Select New -> Create New Java Project 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

4. Give JunitTestProject name to the project and check use project folder as root for source and 

class files 

 

 
5. Click on Next-> Next Screen will Appear-> Click Finish 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

6. Next Screen Shown JunitTestProject Folder in Project Explorer 

 
7. Right Click on Folder name JunitTestProject->New->Package 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

8. Name package as programming hub-> Click on Finish 

 
9. See the Programming hub package see in project Explorer Screen of Eclipse 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

10. Right Click on Programminghub Package->New->Class give the name JunitClass->Click Finish. 

 
11. Next screen will appear 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

12 Write a small program with only two functions Add and Multiplication 

 

 
13. Write Test Cases for Java Program 

Right click on Junitclass-> New-> Click on Junit Test Cases 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

14. Name test suite as AddTest and choose New Junit4 test 

 

 
15. Click on add Checkbox 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

16. Click on Next-> Ok 

 

 
17. Next screen will appear 



Lab Practices-2 Fourth Year Computer Engineering 
 

18. Write a code for Test case addition of two number inside AddTest 

 

 
19. Let us run AddTest test case. Right click AddTest-> Debug As->JUnit Test 

 

 
20. Result of test case is as follows. It shows 0 error and 0 failure and green color test bar which 

means that test case has run successfully( Green Color Bar Indicate) 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

21. Let us purposely give wrong input in assertEquals method or unexpected result here we write 

501 instead of 500 indicate wrong addition result 

 

 
22. Now test case should fail.(Brown Color Bar Indicate) So again run AddTest as follows 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

23. Similarly you can Create Test case for Multiplication Function 

Click on Project Explorer Screen-> Right Click on JunitClass->New->JUnit Test Case-> Give name 

MulTest. 

 

 
24. Click on Next ->Select Mul Check Box -> Click Finish 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

25. Next Screen will appear 

 
26. Write a Test Case Code inside MulTest method 



Lab Practices-2 Fourth Year Computer Engineering 
 

27. Right Click on MulTest->Debug->JUnit Test 

 
28. Execute Test 

 

Test Suite – it is used to test multiple test cases at one time. 

 
29. Now let us create Test Suite both add and mul test cases in one time 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

30. Click on Package name->New->Other->JUnit->JUnit Test Suite->Next 

31. Click on Finsh 

 



Lab Practices-2 Fourth Year Computer Engineering 
 

32. Next Screen Appear that automatically create Test Suite for Add and Mul 

 
33. Execute Test Suite Right Click on All Test ->Debug->JUnit Test 

 
34. Test Suite Executed successfully Test suite fails even if a single test case among all fails. 

 



Lab Practices-2 Fourth Year Computer Engineering 
 

35. Now Create Test Report Using Apache Maven 

 

If you use eclipse-java-photon-R-win32 Version it include Maven in built installed so no need to install 

software via Eclipse help Install Software Option 

 
36. Click on Help in Eclipse->Eclipse Marketplace->Enter Maven Keyword in Search box->Select 

Maven Integration version as per requirement->Click on Install 

 

 
37. Right Click in Project Explorer Window 



Lab Practices-2 Fourth Year Computer Engineering 
 

38. Go to Maven Project-> Click Next 

 
39. Select Check Box Create Simple Project-> Click Next-> Give Group Id and Artifact name 

 
40. Click on Finish-> Next Screen Appear 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

41. MavenTestProject shown Pom.xml file doble click on same 

 
42. it shown some description like 

<modelVersion>4.0.0</modelVersion> 
<groupId>MavenTestReportDemo</groupId> 
<artifactId>MavenTestProject</artifactId> 
<version>0.0.1-SNAPSHOT</version> 



Lab Practices-2 Fourth Year Computer Engineering 
 

43. We add dependencies to pom.xml of Junit and Selenium 

 
44. To add dependency Go to Google.com->Enter Maven repository-> in Search box on 

SiteEnter Junit 

 

 
45. after Enter keyword Junit inside Seach box then Enter->it shown another Site Maven 

Repository for Junit Select that site. 



Lab Practices-2 Fourth Year Computer Engineering 
 

 
 

 
 

46. Click on Maven Repository-JUnit it open another site-(https://mvnrepository.com/artifact/junit) 

https://mvnrepository.com/artifact/junit


Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

47. Click on JUnit-> Open and click on latest version as shown below (here 4.12x) 

 

 
48. Copy above dependency to paste in pom.xml in Maven in Eclipse 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

49. Add <dependencies> tag before pasting as shown below 

 

 
50. Now Paste the above code in between <dependencies> tag then save pom.xml file 

<!-- https://mvnrepository.com/artifact/junit/junit --> 

<dependency> 

<groupId>junit</groupId> 

<artifactId>junit</artifactId> 

<version>4.12</version> 

<scope>test</scope> 

</dependency> 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

51. Now it It gets reflected in Maven by adding Junit jars 

 
52. Same process can be repeated for Selenium server 

Go to Google-> Enter Maven Repository->Enter Selenium Server in Search box->Enter 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 

 

53. Click on First Link of Website-> Click on latest version 

 



Lab Practices-2 Fourth Year Computer Engineering 
 

54. Copy Code in Maven Tab 

 
55. Paste in pom.xml file in between <dependencies> tag 

 

 
56. Now Go to C:\Users\admin\.m2\repository\org\seleniumhq\selenium\selenium-server\3.14.0 

Check the latest selenium server version. 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

57. Now go to Eclipse -> Click on Maven Test Project->Right Click on src/test/java 

 
58. Click New->Package 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

59. Give name to package mavenTest 

 
60. It shows the manvenTest Package under src/test/java folder now rename same by right click on 

mavenTest Click on Refactor->Rename->give another name com.tem.mavenDemo->Click on ok 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 

 

61. rename as com.tem.mavenDemo 

 

 
62. Download Apache Maven Select that binary apache-maven-3.5.4-bin 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

63. after Download->go to Program File->create one folder give name maven-> now extract the 

downloaded file in maven folder 

 

 
64. Environment Setup Very Important Steps to Generate Report 

 
1. JDK and JAVA_HOME 

Make sure JDK is installed, and “JAVA_HOME” variable is added as Windows environment 

variable. Our JDK installed in Program File ->JAVA->JDK 1.8.0 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

2. Set Path of Add M2_HOME and MAVEN_HOME 

Create new system variable name M2_HOME and MAVEN_HOME separately set 

variable value C:\Program Files\maven 

 

Figure Shows the Path of M2_HOME & MAVEN_HOME same. 
 

3. Update PATH Variable as per folowing 

 

C:\Program Files\maven%MAVEN_HOME%\bin;%M2_HOME%\bin; 



Lab Practices-2 Fourth Year Computer Engineering 
 

4. Verification 

 

Now copy Previous Created JUnit Test case java file Add Test and Mul Test Paste 

Externally in E:\MavenTestProject\src\test\java 

 

 
Now Open Eclipse Right Click on MavenTestProject->PropertiesResourcesCopy Path of 

Project Folder 

 

 
Now go to command promptE:\MavenTestProject>mvn clean 



Lab Practices-2 Fourth Year Computer Engineering 
 

 

 
 

Enter E:\MavenTestProject>mvn –version 

 

 

To run test suite or all test cases under project, give command mvn test 

 
Enter E:\MavenTestProject>mvn test 

 
This Command is Used to See the Test Report 

 
You can even run individual test cases. Give command mvn test –Dtesttestcasename 



Lab Practices-2 Fourth Year Computer Engineering 
 

Eg. mvn test –Dtest-AllTest 

 

 

 
 Conclusion 

 
In this way using JUnit and Maven Automation tool we are Perform Unit Testing and Prepare Test 

Report of same. 

 
 Assignment Question 

1. Write any Five Tool for White Box and Black Box Testing Purpose. 


	Title
	Problem Definition:
	Prerequisite:
	Software Requirements:
	Hardware Requirement:
	Learning Objectives:
	Outcomes:
	Theory Concepts:
	Unit Testing Tools
	Extreme Programming & Unit Testing
	Bug taxonomy
	What is Integration Testing?
	Desktop Application Testing by Using Junit Tool What is Junit?
	How to Create Simple Junit Test in Eclipse IDE
	36. Click on Help in Eclipse->Eclipse Marketplace->Enter Maven Keyword in Search box->Select Maven Integration version as per requirement->Click on Install
	43. We add dependencies to pom.xml of Junit and Selenium
	51. Now it It gets reflected in Maven by adding Junit jars
	Assignment Question


